Suppression of Rayleigh-Benard Convection with Proportional-Derivative Controller
نویسندگان
چکیده
We study theoretically (linear stability) and experimentally the use of proportional and derivative controllers to postpone the transition from the no-motion state to the convective state in a circular cylinder heated from below and cooled from above. The heating is provided with an array of individually controlled actuators whose power is adjusted in proportion to temperatures measured in the cylinder's interior. As the proportional controller's gain increases, so does the critical Rayleigh number for the onset of convection. Relatively large proportional controller gains lead to oscillatory convection. The oscillatory convection can be suppressed with the application of a derivative controller, allowing further increases in the critical Rayleigh number. The experimental observations are compared with theoretical predictions.
منابع مشابه
The Effect of Variable Properties on Rayleigh-Benard Convection in an Enclosure Filled with Al2O3-EG-Water Nanofluid
In this paper, the natural convection heat transfer of Al2O3-EG-water nanofluid in a rectangular cavity which is heated from the bottom and is cooled from the top has been investigated numerically. The governing equations for a Newtonian fluid have been solved numerically with a finite volume approach using the SIMPLER algorithm. The main focus of the current study is on the effects of variable...
متن کاملInvestigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition
In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...
متن کاملActive suppression of finite amplitude Rayleigh-Bénard convection
(Received ?? and in revised form ??) We study by a fully nonlinear, three-dimensional pseudospectral, time-splitting simulation the feedback control of a layer of fluid heated from below. The initial condition corresponds to a steady, large-amplitude, preferred convection state obtained at Prandtl number of 7.0 and Rayleigh number of 10 4 , which is about six times the Rayleigh critical value. ...
متن کاملBuoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions
During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016